Assinale a alternativa que mais se aproxima da entalpia de rede do cloreto de cálcio.
ΔH°f(CaClX2X (s))=ΔH°sub(Ca)+ΔH°ion(Ca)+ΔH°ion(CaX+)+ΔHL(ClX2)+2ΔH°ge(Cl)+ΔH°rede(CaClX2)\Delta H\degree_f(\ce{CaCl2_{(s)}})=\Delta H\degree_{sub}(\ce{Ca})+\Delta H\degree_{ion}(\ce{Ca})+\Delta H\degree_{ion}(\ce{Ca^+})+\Delta H_{L}(\ce{Cl2})+2\Delta H\degree_{ge}(\ce{Cl})+\Delta H\degree_{rede}(\ce{CaCl2})ΔH°f(CaClX2X(s))=ΔH°sub(Ca)+ΔH°ion(Ca)+ΔH°ion(CaX+)+ΔHL(ClX2)+2ΔH°ge(Cl)+ΔH°rede(CaClX2) −796 kJmol=190 kJmol+590 kJmol+1150 kJmol+242 kJmol+(−698 kJmol)+ΔH°rede(CaClX2)\pu{-796 kJ//mol}=\pu{190 kJ//mol}+\pu{590 kJ//mol}+\pu{1150 kJ//mol}+\pu{242 kJ//mol}+(\pu{-698 kJ//mol})+\Delta H\degree_{rede}(\ce{CaCl2})−796 molkJ=190 molkJ+590 molkJ+1150 molkJ+242 molkJ+(−698 molkJ)+ΔH°rede(CaClX2) ΔH°rede(CaClX2)=−2270 kJmol\Delta H\degree_{rede}(\ce{CaCl2})=\pu{-2270 kJ//mol}ΔH°rede(CaClX2)=−2270 molkJ