Assinale a alternativa que mais se aproxima da razão entre a energia liberada por átomo de hidrogênio na combustão completa do octano gasoso e na célula de combustível de hidrogênio e oxigênio.

Dados

  • ΔHL(CC)=348 kJmol\Delta H_\mathrm{L}(\ce{C-C}) = \pu{348 kJ//mol}
  • ΔHL(CH)=412 kJmol\Delta H_\mathrm{L}(\ce{C-H}) = \pu{412 kJ//mol}
  • ΔHL(C=O)=743 kJmol\Delta H_\mathrm{L}(\ce{C=O}) = \pu{743 kJ//mol}
  • ΔHL(OH)=463 kJmol\Delta H_\mathrm{L}(\ce{O-H}) = \pu{463 kJ//mol}
  • ΔHL(HX2)=436 kJmol\Delta H_\mathrm{L}(\ce{H2}) = \pu{436 kJ//mol}
  • ΔHL(OX2)=496 kJmol\Delta H_\mathrm{L}(\ce{O2}) = \pu{496 kJ//mol}
Gabarito 3X.08

Combustão completa do octano gasoso: CX8HX18+252OX28COX2+9HX2O\ce{C8H18 + \frac{25}{2}O2 -> 8CO2 + 9H2O} ΔHC=7ΔHL(CC)+18ΔHL(CH)+252ΔHL(OX2)(16ΔHL(C=O)+18ΔHL(OH))\Delta H_C=7\Delta H_L(\ce{C-C})+18\Delta H_L(\ce{C-H})+\frac{25}{2}\Delta H_L(\ce{O2})-(16\Delta H_L(\ce{C=O})+18\Delta H_L(\ce{O-H})) ΔHC=7348 kJmol+18412 kJmol+252496 kJmol16803 kJmol18463 kJmol\Delta H_C=7\cdot\pu{348 kJ//mol}+18\cdot\pu{412 kJ//mol}+\frac{25}{2}\cdot\pu{496 kJ//mol}-16\cdot\pu{803 kJ//mol}-18\cdot\pu{463 kJ//mol} ΔHC=5130 kJmol    ΔHCN(H)=285 kJmol\Delta H_C=\pu{-5130 kJ//mol}\implies\frac{\Delta H_C}{N(H)}=\pu{-285 kJ//mol} Célula de combustível de hidrogênio e oxigênio: HX2+12OX2HX2O\ce{H2 + \frac{1}{2}O2 -> H2O} ΔH=ΔHL(HX2)+12ΔHL(OX2)2ΔHL(OH)\Delta H=\Delta H_L(\ce{H2})+\frac{1}{2}\Delta H_L(\ce{O2})-2\Delta H_L(\pu{O-H}) ΔH=463 kJmol+248 kJmol926 kJmol\Delta H=\pu{463 kJ//mol}+\pu{248 kJ//mol}-\pu{926 kJ//mol} ΔH=215 kJmol    ΔHN(H)=107,5 kJmol\Delta H=\pu{-215 kJ//mol}\implies\frac{\Delta H}{N(H)}=\pu{-107,5 kJ//mol} Logo, a razão pedida é dada por: r=285 kJmol107,5 kJmol2,65r=\frac{\pu{-285 kJ//mol}}{\pu{-107,5 kJ//mol}}\approx 2,65